Constrained inference of protein interaction networks for invadopodium formation in cancer
Integrating prior molecular network knowledge into interpretation of new experimental data is routine practice in biology research. However, a dilemma for deciphering interactome using Bayes’ rule is the demotion of novel interactions with low prior probabilities. Here the authors present constrained generalised logical network (CGLN) inference to predict novel interactions in dynamic networks, respecting previously known interactions and observed temporal coherence. It encodes prior interactions as probabilistic logic rules called local constraints, and forms global constraints using observed dynamic patterns. CGLN...
Source: IET Systems Biology - March 24, 2016 Category: Biology Source Type: research

Graph theory and stability analysis of protein complex interaction networks
Protein complexes play an essential role in many biological processes. Complexes can interact with other complexes to form protein complex interaction network (PCIN) that involves in important cellular processes. There are relatively few studies on examining the interaction topology among protein complexes; and little is known about the stability of PCIN under perturbations. We employed graph theoretical approach to reveal hidden properties and features of four species PCINs. Two main issues are addressed, (i) the global and local network topological properties, and (ii) the stability of the networks under 12 types of pert...
Source: IET Systems Biology - March 24, 2016 Category: Biology Source Type: research

Transient response characteristics in a biomolecular integral controller
The cellular behaviour of perfect adaptation is achieved through the use of an integral control element in the underlying biomolecular circuit. It is generally unclear how integral action affects the important aspect of transient response in these biomolecular systems, especially in light of the fact that it typically deteriorates the transient response in engineering contexts. To address this issue, the authors investigated the transient response in a computational model of a simple biomolecular integral control system involved in bacterial signalling. They find that the transient response can actually speed up as the int...
Source: IET Systems Biology - March 24, 2016 Category: Biology Source Type: research

Detecting small attractors of large Boolean networks by function-reduction-based strategy
Boolean networks (BNs) are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behaviour of systems. A central aim of Boolean-network analysis is to find attractors that correspond to various cellular states, such as cell types or the stage of cell differentiation. This problem is NP-hard and various algorithms have been used to tackle it with considerable success. The idea is that a singleton attractor corresponds to n consistent subsequences in the truth table. To find these subsequences, the authors gradually reduce the entire truth table of Boolean fun...
Source: IET Systems Biology - March 24, 2016 Category: Biology Source Type: research

Transcriptome marker diagnostics using big data
In this study, the authors propose a novel transcriptome marker diagnosis to tackle this problem using big RNA-seq data by viewing whole transcriptome as a profile marker systematically. The systems diagnosis not only avoids the reproducibility issue of the existing gene-/network-marker-based diagnostic methods, but also achieves rivalling-clinical diagnostic results by extracting true signals from big RNA-seq data. Their method demonstrates a better fit for personalised diagnostics by attaining exceptional diagnostic performance via using systems information than its competitive methods and prepares itself as a good candi...
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Sparse electrocardiogram signals recovery based on solving a row echelon-like form of system
This study proposes a two-stage recovery algorithm for sparse biomedical signals in time domain. In the first stage, the concentration subspaces are found in advance. Then by exploiting these subspaces, the mixing matrix is estimated accurately. In the second stage, based on the number of active sources at each time point, the time points are divided into different layers. Next, by constructing some transformation matrices, these time points form a row echelon-like system. After that, the sources at each layer can be solved out explicitly by corresponding matrix operations. It is noting that all these operations are conduc...
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Extended particle swarm optimisation method for folding protein on triangular lattice
In this study, the authors studied the protein structure prediction problem by the two-dimensional hydrophobic–polar model on triangular lattice. Particularly the non-compact conformation was modelled to fold the amino acid sequence into a relatively larger triangular lattice, which is more biologically realistic and significant than the compact conformation. Then protein structure prediction problem was abstracted to match amino acids to lattice points. Mathematically, the problem was formulated as an integer programming and they transformed the biological problem into an optimisation problem. To solve this problem...
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Knowledge-based three-body potential for transcription factor binding site prediction
A structure-based statistical potential is developed for transcription factor binding site (TFBS) prediction. Besides the direct contact between amino acids from TFs and DNA bases, the authors also considered the influence of the neighbouring base. This three-body potential showed better discriminate powers than the two-body potential. They validate the performance of the potential in TFBS identification, binding energy prediction and binding mutation prediction. (Source: IET Systems Biology)
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Kinetic model of metabolic network for xiamenmycin biosynthetic optimisation
In this study,, the authors present a kinetic metabolic model to evaluate fluxes in an engineered Streptomyces lividans with xiamenmycin-oriented genetic modification based on generic enzymatic rate equations and stability constraints. Lyapunov function was used for a viability optimisation. From their kinetic model, the flux distributions for the engineered S. lividans fed on glucose and glycerol as carbon sources were calculated. They found that if the bacterium can utilise glucose simultaneously with glycerol, xiamenmycin production can be enhanced by 40% theoretically, while maintaining the same growth rate. Glycerol m...
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks
Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model and improve the accuracy of estimation is more important. To address this question, the authors take some known parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they decompose the whole dynamic model into subset network modules, based on different modules, and then they apply different estimation approaches. This technique is called Rao...
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Crosstalk between pathways enhances the controllability of signalling networks
In this study, the authors explored the controllability and control energy of several signalling networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On the basis of the theory of structure controllability, they revealed that biological mechanisms, such as cross-pathway interactions, compartmentalisation and so on make the networks easier to fully control. Furthermore, using numerical simulations for two realistic examples, they demonstrated that the control energy of normal networks with crosstalk is lower than in networks without crosstalk. These results indicate that...
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Multiscale modeling biological systems
(Source: IET Systems Biology)
Source: IET Systems Biology - January 29, 2016 Category: Biology Source Type: research

Remote health monitoring system for detecting cardiac disorders
Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, depl...
Source: IET Systems Biology - November 20, 2015 Category: Biology Source Type: research

HeartSearcher: finds patients with similar arrhythmias based on heartbeat classification
Long-term electrocardiogram data can be acquired by linking a Holter monitor to a mobile phone. However, most systems of this variety are simply designed to detect arrhythmia through heartbeat classification, and do not provide any additional support for clinical decisions. HeartSearcher identifies patients with similar arrhythmias from heartbeat classifications, by summarising each patient's typical heartbeat pattern in the form of a regular expression, and then ranking patients according to the similarities of their patterns. Results obtained using electrocardiogram data from the MIT-BIH arrhythmia database show that thi...
Source: IET Systems Biology - November 20, 2015 Category: Biology Source Type: research

In silico discovery of significant pathways in colorectal cancer metastasis using a two-stage optimisation approach
In this study, the authors propose a two-stage optimisation approach to effectively select biomarkers and discover interactions among them. At the first stage, particle swarm optimisation (PSO) and differential evolution (DE) are used to optimise parameters of support vector machine recursive feature elimination algorithm, and dynamic Bayesian network is then used to predict temporal relationship between biomarkers across two time points. Results show that 18 and 25 biomarkers selected by PSO and DE-based approach, respectively, yields the same accuracy of 97.3% and F1-score of 97.7 and 97.6%, respectively. The stratified ...
Source: IET Systems Biology - November 20, 2015 Category: Biology Source Type: research