Molecular Cell Biology of Male Meiotic Chromosomes and Isolation of Male Meiocytes in Arabidopsis thaliana
Plants typically produce numerous flowers whose meiotic chromosomes are relatively easy to observe, making them excellent structures for studying the cellular processes underlying meiosis. In recent years, breakthroughs in light and electron microscopic technologies for small chromosomes, combined with molecular genetic methods, have resulted in major advances in the understanding of meiosis in the model plant Arabidopsis thaliana. In this chapter, we summarize protocols for basic cytology, fluorescence in situ hybridization, immunofluorescence, electron microscopy, and isolation of male meiocytes for the analysis of Arabi...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Flower Development: Open Questions and Future Directions
Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specifica...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Flower Diversity and Angiosperm Diversification
The flower itself, which comprises most of the evolutionary innovations of flowering plants, bears special significance for understanding the origin and diversification of angiosperms. The sudden origin of angiosperms in the fossil record poses unanswered questions on both the origins of flowering plants and their rapid spread and diversification. Central to these questions is the role that the flower, and floral diversity, played. Recent clarifications of angiosperm phylogeny provide the foundation for investigating evolutionary transitions in floral features and the underlying genetic mechanisms of stasis and change. The...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Grass Flower Development
Grasses bear unique flowers lacking obvious petals and sepals in special inflorescence units, the florets and the spikelet. Despite this, grass floral organs such as stamens and lodicules (petal homologs) are specified by ABC homeotic genes encoding MADS domain transcription factors, suggesting that the ABC model of eudicot flower development is largely applicable to grass flowers. However, some modifications need to be made for the model to fit grasses well: for example, a YABBY gene plays an important role in carpel specification. In addition, a number of genes are involved in the development of the lateral organs that c...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Flower Development in the Asterid Lineage
A complete understanding of the genetic control of flower development requires a comparative approach, involving species from across the angiosperm lineage. Using the accessible model plant Arabidopsis thaliana many of the genetic pathways that control development of the reproductive growth phase have been delineated. Research in other species has added to this knowledge base, revealing that, despite the myriad of floral forms found in nature, the genetic blueprint of flower development is largely conserved. However, these same studies have also highlighted differences in the way flowering is controlled in evolutionarily d...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs
The field of Arabidopsis flower development began in the early 1980s with the initial description of several mutants including apetala1, apetala2, and agamous that altered floral organ identity (Koornneef and van der Veen, Theor Appl Genet 58:257–263, 1980; Koornneef et al., J Hered 74:265–272, 1983). By the end of the 1980s, these mutants were receiving more focused attention to determine precisely how they affected flower development (Komaki et al., Development 104:195–203, 1988; Bowman et al., Plant Cell 1:37–52, 1989). In the last quarter century, impressive progress has been made in characteriz...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Genetic and Phenotypic Analysis of Shoot Apical and Floral Meristem Development
The shoot apical and floral meristems (SAM and FM, respectively) of Arabidopsis thaliana contain reservoirs of self-renewing stem cells that function as sources of progenitor cells for organ formation during development. The primary SAM produces all of the aerial structures of the adult plant, whereas the FMs generate the four types of floral organs. Consequently, aberrant SAM and FM activity can profoundly affect vegetative and reproductive plant morphology. The embedded location and small size of Arabidopsis meristems make accessing these structures difficult, so specialized techniques have been developed to facilitate t...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Genetic and Phenotypic Analyses of Petal Development in Arabidopsis
The link between gene regulation/function and organ shape (morphogenesis) is poorly understood and remains one of the major issues in developmental biology. Petals are attractive model organs for studying organogenesis mainly because they have a simple laminar structure with a small number of cell types. Moreover, because petals are dispensable for plant growth and reproduction, one can experimentally manipulate petal development and dissect the genetic mechanisms behind the changes without serious effects on plant viability. Here, we describe the methods used to study petal development at the molecular, cytological, and g...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Cell Biological Analyses of Anther Morphogenesis and Pollen Viability in Arabidopsis and Rice
Major advances have been made in recent years in our understanding of anther development through a combination of genetic studies, cell biological technologies, biochemical analysis, microarray and high-throughput sequencing-based approaches. In this chapter, we summarize the widely used protocols for pollen viability staining; the investigation of anther morphogenesis by light microscopy of semi-thin sections; TUNEL assay for programmed tapetum cell death; and laser microdissection procedures to obtain specialized cells or cell layers for carrying out transcriptomics. (Source: Springer protocols feed by Plant Sciences)
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Scanning Electron Microscopy Analysis of Floral Development
Scanning Electron Microscopy (SEM) allows the morphological characterization of the surface features of floral and inflorescence structures in a manner that retains the topography or three-dimensional appearance of the structure. Even at relatively low magnification levels it is possible to characterize early developmental stages. Using medium to high power magnification at later stages of development, cell surface morphology can be visualized allowing the identification of specific epidermal cell types. The analysis of the altered developmental progressions of mutant plants can provide insight into the developmental proce...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Microscopic Analysis of Arabidopsis Ovules
Ovules are the major female reproductive organs in higher plants. Furthermore, ovules of Arabidopsis thaliana are successfully used as model system to study plant organogenesis. Here we describe two microscopic techniques to analyze ovule development in Arabidopsis. Both methods involve fixed specimens and allow rapid, easy, and reproducible morphological comparisons between wild-type and mutant ovule development. (Source: Springer protocols feed by Plant Sciences)
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Laser-Assisted Microdissection Applied to Floral Tissues
Cellular context can be crucial when studying developmental processes as well as responses to environmental variation. Several different tools have been developed in recent years to isolate specific tissues or cell types. Laser-assisted microdissection (LAM) allows for the isolation of such specific tissue or single cell-types purely based on morphology and cytology. This has the advantage that (1) cell types that are rare can be isolated from heterogeneous tissue, (2) no marker line with cell type-specific expression needs to be established, and (3) the method can be applied to non-model species and species that are diffi...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Translating Ribosome Affinity Purification (TRAP) for Cell-Specific Translation Profiling in Developing Flowers
The development of a multicellular organism is accompanied by cell differentiation. In fact, many biological processes have cell specificity, such that distinct cell types respond differently to endogenous or environmental cues. To obtain cell-specific gene expression profiles, translating ribosome affinity purification (TRAP) has been developed to label polysomes containing translating mRNAs in genetically defined cell types. Here, we describe the immunopurification of epitope-labeled polysomes and associated RNAs from target cell types. TRAP has the additional advantage of obtaining only translating mRNAs, which are a be...
Source: Springer protocols feed by Plant Sciences - January 11, 2014 Category: Biology Source Type: news

Determination of Auxin Transport Parameters on the Cellular Level
The accumulation of radioactively labelled compounds in cells is frequently used for the determination of activities of various transport systems located at the plasma membrane, including the system for carrier-mediated transport of plant hormone auxin. The measurements of auxin transport could be performed on the tissue level as well, but for more precise quantitative analysis of activity of individual auxin carriers the model of plant cell cultures represents an invaluable tool. Here, we describe the method for the determination of the activities of auxin influx and efflux carriers in plant cells grown in a suspension us...
Source: Springer protocols feed by Plant Sciences - December 6, 2013 Category: Biology Source Type: news

Analyzing the In Vivo Status of Exogenously Applied Auxins: A HPLC-Based Method to Characterize the Intracellularly Localized Auxin Transporters
Exogenous application of biologically important molecules for plant growth promotion and/or regulation is very common both in plant research and horticulture. Plant hormones such as auxins and cytokinins are classes of compounds which are often applied exogenously. Nevertheless, plants possess a well-established machinery to regulate the active pool of exogenously applied compounds by converting them to metabolites and conjugates. Consequently, it is often very useful to know the in vivo status of applied compounds to connect them with some of the regulatory events in plant developmental processes. The in vivo status of ap...
Source: Springer protocols feed by Plant Sciences - December 6, 2013 Category: Biology Source Type: news