Silk electrogel coatings for titanium dental implants

The aim of this study was to develop biocompatible, biodegradable dental implant coatings capable of withstanding the mechanical stresses imparted during implant placement. Two techniques were developed to deposit uniform silk fibroin protein coatings onto dental implants. Two novel coating techniques were implemented to coat titanium shims, studs, and implants. One technique involved electrodeposition of the silk directly onto the titanium substrates. The second technique consisted of melting electrogels and dispensing the melted gels onto the titanium to form the coatings. Both techniques were tested for coating reproducibility using a stylus profilometer and a dial thickness gauge. The mechanical strength of adhered titanium studs was assessed using a universal mechanical testing machine. Uniform, controllable coatings were obtained from both the electrodeposition and melted electrogel coating techniques, tunable from 35 to 1654 µm thick under the conditions studied, and able to withstand delamination during implantation into implant socket mimics. Mechanical testing revealed that the adhesive strength of electrogel coatings, 0.369 ± 0.09 MPa, rivaled other biologically derived coating systems such as collagen, hydroxyapatite, and chitosan (0.07–4.83 MPa). These novel silk-based techniques offer a unique approach to the deposition of safe, simple, mechanically robust, biocompatible, and degradable implant coatings.
Source: Journal of Biomaterials Applications - Category: Materials Science Authors: Tags: Functional biomaterials Surfaces Source Type: research