Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses

Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and 11B MAS NMR spectroscopy to establish fundamental composition – structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48–132 s, 206–602 s, and 16–36 MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition tem...
Source: Journal of Biomaterials Applications - Category: Materials Science Authors: Tags: Biomaterials Processing Source Type: research