Biochemical and functional characterization of Bothropoidin: the first haemorrhagic metalloproteinase from Bothrops pauloensis snake venom

We present the biochemical and functional characterization of Bothropoidin, the first haemorrhagic metalloproteinase isolated from Bothrops pauloensis snake venom. This protein was purified after three chromatographic steps on cation exchange CM-Sepharose fast flow, size-exclusion column Sephacryl S-300 and anion exchange Capto Q. Bothropoidin was homogeneous by SDS-PAGE under reducing and non-reducing conditions, and comprised a single chain of 49,558 Da according to MALDI TOF analysis. The protein presented an isoelectric point of 3.76, and the sequence of six fragments obtained by MS (MALDI TOF\TOF) showed a significant score when compared with other PIII Snake venom metalloproteinases (SVMPs). Bothropoidin showed proteolytic activity on azocasein, Aα-chain of fibrinogen, fibrin, collagen and fibronectin. The enzyme was stable at pH 6–9 and at lower temperatures when assayed on azocasein. Moreover, its activity was inhibited by EDTA, 1.10-phenanthroline and β-mercaptoethanol. Bothropoidin induced haemorrhage [minimum haemorrhagic dose (MHD) = 0.75 µg], inhibited platelet aggregation induced by collagen and ADP, and interfered with viability and cell adhesion when incubated with endothelial cells in a dose and time-dependent manner. Our results showed that Bothropoidin is a haemorrhagic metalloproteinase that can play an important role in the toxicity of B. pauloensis envenomation and might be used as a tool for studying the effects of SVMPs on haemos...
Source: Journal of Biochemistry - Category: Biochemistry Authors: Tags: Regular Papers Source Type: research