Adult zebrafish ventricular electrical gradients as tissue mechanisms of ECG patterns under baseline vs. oxidative stress

ConclusionsDespite remarkable apparent similarities, zebrafish and human ventricular electrocardiographic patterns are mirror images supported by opposite electrical gradients. Like mammalian ventricles, zebrafish ventricles are also susceptible to H2O2 proarrhythmic perturbation via CaMKII activation. Our findings suggest that the adult zebrafish heart may constitute a clinically relevant model to investigate ventricular arrhythmias induced by oxidative stress. However, the fundamental ventricular activation and repolarization differences between the two species that we demonstrated in this study highlight the potential limitations when extrapolating results from zebrafish experiments to human cardiac electrophysiology, arrhythmias, and drug toxicities.
Source: Cardiovascular Research - Category: Cardiology Source Type: research