Time-Resolved Spectrometry of Mitochondrial NAD(P)H Fluorescence and Its Applications for Evaluating the Oxidative State in Living Cells

Time-resolved fluorescence spectrometry is a highly valuable technological tool to detect and characterize mitochondrial metabolic oxidative changes by means of endogenous fluorescence (Chorvat and Chorvatova, Laser Phys Lett 6: 175–193, 2009). Here, we describe the detection and measurement of endogenous mitochondrial NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) fluorescence directly in living cultured cells using fluorescence lifetime spectrometry imaging after excitation with 405 nm picosecond (ps) laser. Time-correlated single photon counting (TCSPC) method is employed.
Source: Springer protocols feed by Molecular Medicine - Category: Molecular Biology Source Type: news