Naturally occurring hotspot cancer mutations in G{alpha}13 promote oncogenic signaling [Molecular Bases of Disease]

Heterotrimeric G-proteins are signaling switches broadly divided into four families based on the sequence and functional similarity of their Gα subunits: Gs, Gi/o, Gq/11, and G12/13. Artificial mutations that activate Gα subunits of each of these families have long been known to induce oncogenic transformation in experimental systems. With the advent of next-generation sequencing, activating hotspot mutations in Gs, Gi/o, or Gq/11 proteins have also been identified in patient tumor samples. In contrast, patient tumor-associated G12/13 mutations characterized to date lead to inactivation rather than activation. By using bioinformatic pathway analysis and signaling assays, here we identified cancer-associated hotspot mutations in Arg-200 of Gα13 (encoded by GNA13) as potent activators of oncogenic signaling. First, we found that components of a G12/13-dependent signaling cascade that culminates in activation of the Hippo pathway effectors YAP and TAZ is frequently altered in bladder cancer. Up-regulation of this signaling cascade correlates with increased YAP/TAZ activation transcriptional signatures in this cancer type. Among the G12/13 pathway alterations were mutations in Arg-200 of Gα13, which we validated to promote YAP/TAZ-dependent (TEAD) and MRTF-A/B-dependent (SRE.L) transcriptional activity. We further showed that this mechanism relies on the same RhoGEF-RhoGTPase cascade components that are up-regulated in bladder cancers. Moreover, Gα13 Arg-200 mutants induced ...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Accelerated Communications Source Type: research