Pex3 confines pexophagy receptor activity of Atg36 to peroxisomes by regulating Hrr25-mediated phosphorylation and proteasomal degradation [Cell Biology]

In macroautophagy (hereafter autophagy), cytoplasmic molecules and organelles are randomly or selectively sequestered within double-membrane vesicles called autophagosomes and delivered to lysosomes or vacuoles for degradation. In selective autophagy, the specificity of degradation targets is determined by autophagy receptors. In the budding yeast Saccharomyces cerevisiae, autophagy receptors interact with specific targets and Atg11, resulting in the recruitment of a protein complex that initiates autophagosome formation. Previous studies have revealed that autophagy receptors are regulated by posttranslational modifications. In selective autophagy of peroxisomes (pexophagy), the receptor Atg36 localizes to peroxisomes by binding to the peroxisomal membrane protein Pex3. We previously reported that Atg36 is phosphorylated by Hrr25 (casein kinase 1δ), increasing the Atg36–Atg11 interaction and thereby stimulating pexophagy initiation. However, the regulatory mechanisms underlying Atg36 phosphorylation are unknown. Here, we show that Atg36 phosphorylation is abolished in cells lacking Pex3 or expressing a Pex3 mutant defective in the interaction with Atg36, suggesting that the interaction with Pex3 is essential for the Hrr25-mediated phosphorylation of Atg36. Using recombinant proteins, we further demonstrated that Pex3 directly promotes Atg36 phosphorylation by Hrr25. A co-immunoprecipitation analysis revealed that the interaction of Atg36 with Hrr25 depends on Pex3. These ...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Cell Biology Source Type: research
More News: Biology | Chemistry | Cytology | Study