The Ig-like domain of Punctin/MADD-4 is the primary determinant for interaction with the ectodomain of neuroligin NLG-1 [Molecular Biophysics]

Punctin/MADD-4, a member of the ADAMTSL extracellular matrix protein family, was identified as an anterograde synaptic organizer in the nematode Caenorhabditis elegans. At GABAergic neuromuscular junctions, the short isoform MADD-4B binds the ectodomain of neuroligin NLG-1, itself a postsynaptic organizer of inhibitory synapses. To identify the molecular bases of their partnership, we generated recombinant forms of the two proteins and carried out a comprehensive biochemical and biophysical study of their interaction, complemented by an in vivo localization study. We show that spontaneous proteolysis of MADD-4B first generates a shorter N-MADD-4B form, which comprises four thrombospondin (TSP) domains and one Ig-like domain and binds NLG-1. A second processing event eliminates the C-terminal Ig-like domain along with the ability of N-MADD-4B to bind NLG-1. These data identify the Ig-like domain as the primary determinant for N-MADD-4B interaction with NLG-1 in vitro. We further demonstrate in vivo that this Ig-like domain is essential, albeit not sufficient per se, for efficient recruitment of GABAA receptors at GABAergic synapses in C. elegans. The interaction of N-MADD-4B with NLG-1 is also disrupted by heparin, used as a surrogate for the extracellular matrix component, heparan sulfate. High-affinity binding of heparin/heparan sulfate to the Ig-like domain may proceed from surface charge complementarity, as suggested by homology three-dimensional modeling. These data point...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Neurobiology Source Type: research