Impact of Sodium Arsenite on Chromosomal Aberrations With Respect to Polymorphisms of Detoxification and DNA Repair Genes

This study was conducted to determine the association between arsenic exposure and polymorphisms of genes involved in detoxification (glutathione S-transferase T1 [GSTT1], glutathione S-transferase M1 [GSTM1], glutathione S-transferase O2 [GSTO2], catalase [CAT], and NAD(P)H quinone oxidoreductase1 [NQO1]) as well as nonhomologous end joining DNA repair genes (XRCC4, XRCC5, and XRCC6) with induction of chromosomal aberrations. The participants consisted of 123 healthy males who were genotyped using polymerase chain reaction-based methods. Primary cultures of whole blood were treated with sodium arsenite (NaAsO2; iAs(III); at final concentration 1 µmol/L), mitomycin C (at final concentration 60 g/mL; as positive control), or untreated. For each culture, mitotic index (MI), chromatid breaks (CBs), CAs, and total percentage of aberrant cells were determined. The levels of CB and percentage of aberrant cells were significantly higher in the TT genotype of CAT (C-262T polymorphism) than the CC genotype. The CB value in samples with GSTM1 active genotype was significantly higher than the null genotype. The MI in samples with TT genotype of NQO1 (C609T polymorphism) was significantly higher than MI in samples having CC and CT genotypes. There was no association between MI, CB, CA, and percentage of aberrant cells and polymorphisms of XRCC4, XRCC5, and XRCC6.
Source: International Journal of Toxicology - Category: Toxicology Authors: Tags: Regular Articles Source Type: research