Transcriptome analysis of phototransduction-related genes in tentacles of the sea cucumber Apostichopus japonicus

In this study, we performed RNA-Seq analysis to examine the tentacle transcriptome of A. japonicus specimens that had been subjected to dark and light (5 min and 1 h) conditions. We specifically focused on detecting genes involved in opsin-based light perception, including opsins and members of phototransduction-related pathways. On the basis of comparisons with both vertebrate and invertebrate phototransduction pathways, we determined that components of two of the main metazoan phototransduction pathways were altered in response to illumination. Among the key phototransduction-related genes in tentacles, we identified retinol dehydrogenase, members of the dehydrogenase/reductase family, and myosin III, and also detected a pair of visual pigment-like receptors, peropsin and peropsin-like, the homologous genes of which are believed to have the same function but show opposite expression patterns in response to different light environments. In general, the up-regulation of key genes in sea cucumber exposed to illumination indicated that the tentacles can respond to differences in the light environment at the molecular level.Graphical abstract
Source: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics - Category: Genetics & Stem Cells Source Type: research