The 2013 Medicine/Physiology Nobel: Traffic

This year's Medicine Nobel is one that's been anticipated for some time. James Rothman of Yale, Randy W. Schekman of Berkeley, and Thomas C. Südhof of Stanford are cited for their fundamental discoveries in vesicular trafficking, and I can't imagine anyone complaining that it wasn't deserved. (The only controversy would be thanks, once again, to the "Rule of Three" in Alfred Nobel's will. Richard Scheller of Genentech has won prizes with Südhof and with Scheller for his work in the same field). Here's the Nobel Foundation's scientific summary, and as usual, it's a good one. Vesicles are membrane-enclosed bubbles that bud off from cellular compartments and transport cargo to other parts of the cell (or outside it entirely), where they merge with another membrane and release their contents. There's a lot of cellular machinery involved on both the sending and receiving end, and that's what this year's winners worked out. As it turns out, there are specific proteins (such as the SNAREs) imbedded in intracellular membranes that work as an addressing system: "tie up the membrane around this point and send the resulting globule on its way", or "stick here and start the membrane fusion process". This sort of thing is going on constantly inside the cell, and the up-to-the-surface-and-out variation is particularly noticeably in neurons, since they're constantly secreting neurotransmitters into the synapse. That latter process turned out to be very closely tied to signals like local...
Source: In the Pipeline - Category: Chemists Tags: Biological News Source Type: blogs