Nanoscale architecture of ceria-based model catalysts: Pt–Co nanostructures on well-ordered CeO2(111) thin films

Publication date: June 2020Source: Chinese Journal of Catalysis, Volume 41, Issue 6Author(s): Yaroslava Lykhach, Tomáš Skála, Armin Neitzel, Nataliya Tsud, Klára Beranová, Kevin C. Prince, Vladimír Matolín, Jörg LibudaAbstractWe have prepared and characterized atomically well-defined model systems for ceria-supported Pt–Co core–shell catalysts. Pt@Co and Co@Pt core–shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields Co–CeO2(111) solid solution at low Co coverage (0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt–Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O2 triggers the decomposition of Pt–Co alloy along with th...
Source: Chinese Journal of Catalysis - Category: Chemistry Source Type: research