Nitrogen and sulfur dual-doped high-surface-area hollow carbon nanospheres for efficient CO2 reduction

Publication date: May 2020Source: Chinese Journal of Catalysis, Volume 41, Issue 5Author(s): Guodong Li, Yongjie Qin, Yu Wu, Lei Pei, Qi Hu, Hengpan Yang, Qianling Zhang, Jianhong Liu, Chuanxin HeAbstractThe electrochemical reduction of CO2 (CO2RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials (SZ-HCN) as CO2RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area (1510 m2 g−g1) exhibited efficient electrocatalytic activity and selectivity for CO2RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency (~93%) at −0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2RR activity.Graphical AbstractA N and S dual-doped carbon-based catalyst with a high specific surface area was prepared via a facile route, which showed remar...
Source: Chinese Journal of Catalysis - Category: Chemistry Source Type: research