Fundamental heart sounds analysis using improved complete ensemble EMD with adaptive noise

Publication date: Available online 16 January 2020Source: Biocybernetics and Biomedical EngineeringAuthor(s): Miguel Altuve, Luis Suárez, Jeyson ArdilaAbstractPhonocardiogram (PCG) recordings contain valuable information about the functioning and state of the heart that is useful in the diagnosis of cardiovascular diseases. The first heart sound (S1) and the second heart sound (S2), produced by the closing of the atrioventricular valves and the closing of the semilunar valves, respectively, are the fundamental sounds of the heart. The similarity in morphology and duration of these heart sounds and their superposition in the frequency domain makes it difficult to use them in computer systems to provide an automatic diagnosis. Therefore, in this paper, we analyzed these heart sounds in the intrinsic mode functions (IMF) domain, which were issued from two time-frequency decomposition techniques, the empirical mode decomposition (EMD) and the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), with the aim of retrieving useful information on an expanded basis. The decomposition of PCG recordings into IMF allows representing the fundamental cardiac sounds in many oscillating components, increasing thus the observability of the system. Moreover, the time-frequency representation of PCG recordings could provide valuable information to automatically detect heart sounds and diagnose pathologies from characteristic patterns of these heart sounds in ...
Source: Biocybernetics and Biomedical Engineering - Category: Biomedical Engineering Source Type: research