Changes in redox and endoplasmic reticulum homeostasis are related to congenital generalized lipodystrophy type 2

Publication date: Available online 7 January 2020Source: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of LipidsAuthor(s): Aquiles Sales Craveiro Sarmento, Josivan Gomes Lima, Ana Rafaela de Souza Timoteo, Marcela Abbott Galvão Ururahy, Aurigena Antunes de Araújo, Roseane Carvalho Vasconcelos, Verônica Kristina Cândido Dantas, Lucymara Fassarella Agnez-Lima, Julliane Tamara Araújo de Melo CamposAbstractCGL type 2 is a rare autosomal recessive syndrome characterized by an almost complete lack of body fat. CGL is caused by loss-of-function mutations in both alleles of the BSCL2 gene that codifies to seipin. Subjects often show hyperglycemia, decreased HDL-c, and hypoadiponectinemia. These laboratory findings are important triggers for changes in redox and ER homeostasis. Therefore, our aim was to investigate whether these intracellular mechanisms are associated with this syndrome. We collected blood from people from Northeastern Brazil with 0, 1, and 2 mutant alleles for the rs786205071 in the BSCL2 gene. Through the qPCR technique, we evaluated the expression of genes responsible for triggering the antioxidant response, DNA repair, and ER stress in leukocytes. Colorimetric tests were applied to quantify lipid peroxidation and to evaluate the redox status of glutathione, as well as to access the panorama of energy metabolism. Long extension PCR was performed to observe leukocyte mitochondrial DNA lesions, and the immunoblot technique to investigate plasm...
Source: Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids - Category: Lipidology Source Type: research