An Improved Multi-swarm Particle Swarm Optimizer for Optimizing the Electric Field Distribution of Multichannel Transcranial Magnetic Stimulation

Publication date: Available online 3 January 2020Source: Artificial Intelligence in MedicineAuthor(s): Hui Xiong, Bowen Qiu, Jinzhen LiuAbstractMultichannel transcranial magnetic stimulation (mTMS) is a therapeutic method to improve psychiatric diseases, which has a flexible working pattern used to different applications. In order to make the electric field distribution in the brain meet the treatment expectations, we have developed a novel multi-swam particle swarm optimizer (NMSPSO) to optimize the current configuration of double layer coil array. To balance the exploration and exploitation abilities, three novel improved strategies are used in NMSPSO based on multi-swarm particle swarm optimizer. Firstly, a novel information exchange strategy is achieved by individual exchanges between sub-swarms. Secondly, a novel leaning strategy is used to control knowledge dissemination in the population, which not only increases the diversity of the particles but also guarantees the convergence. Finally, a novel mutation strategy is introduced, which can help the population jump out of the local optimum for better exploration ability. The method is examined on a set of well-known benchmark functions and the results show that NMSPSO has better performance than many particle swarm optimization variants. And the superior electric field distribution in mTMS can be obtained by NMSPSO to optimize the current configuration of the double layer coil array.
Source: Artificial Intelligence in Medicine - Category: Bioinformatics Source Type: research