Chemistry On The End of DNA

We chemists have always looked at the chemical machinery of living systems with a sense of awe. A billion years of ruthless pruning (work, or die) have left us with some bizarrely efficient molecular catalysts, the enzymes that casually make and break bonds with a grace and elegance that our own techniques have trouble even approaching. The systems around DNA replication are particularly interesting, since that's one of the parts you'd expect to be under the most selection pressure (every time a cell divides, things had better work). But we're not content with just standing around envying the polymerase chain reaction and all the rest of the machinery. Over the years, we've tried to borrow whatever we can for our own purposes - these tools are so powerful that we can't resist finding ways to do organic chemistry with them. I've got a particular weakness for these sorts of ideas myself, and I keep a large folder of papers (electronic, these days) on the subject. So I was interested to have a reader send along this work, which I'd missed when it came out on PLOSONE. It's from Pehr Harbury's group at Stanford, and it's in the DNA-linked-small-molecule category (which I've written about, in other cases, here and here). Here's a good look at the pluses and minuses of this idea: However, with increasing library complexity, the task of identifying useful ligands (the ‘‘needles in the haystack’’) has become increasingly difficult. In favorable cases, a bulk selection for ...
Source: In the Pipeline - Category: Chemists Tags: Drug Assays Source Type: blogs