Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza

In this study, we cultured the red tide alga Skeletonema costatum and the green tide alga Ulva linza under ambient (400 ppm) and future CO2 (1000 ppm) levels and three temperatures (12, 18, 24 °C) in both monoculture and coculture systems. Coculture did not affect the growth rate of U. linza but significantly decreased it for S. costatum. Elevated CO2 relieved the inhibitory effect of U. linza on the growth of S. costatum, particularly for higher temperatures. At elevated CO2, higher temperature increased the growth rate of S. costatum but reduced it for U. linza. Coculture with U. linza reduced the net photosynthetic rate of S. costatum, which was relieved by elevated CO2. This pattern was also found in Chl a content, indicating that U. linza may inhibit growth of S. costatum via harming pigment synthesis and thus photosynthesis. In monoculture, higher temperature did not affect respiration rate of S. costatum but increased it in U. linza. Coculture did not affect respiration of U. linza but stimulated it for S. costatum, which was a signal of responding to biotic and/abiotic stress. The increased growth of S. costatum at higher temperature and decreased inhibition of U. linza on S. costatum at elevated CO2 suggest that red tides may have more advantages over green tides in future warmer and CO2-enriched oceans.
Source: Harmful Algae - Category: Environmental Health Source Type: research