Structural and functional investigation of AerF, a NADPH-dependent alkenal double bond reductase participating in the biosynthesis of Choi moiety of aeruginosin

In this study, functional and mechanistic analyses of AerF from Microcystis aeruginosa were performed. Observation of enzymatic assay demonstrates that AerF is a NADPH-dependent alkenal double bond reductase that catalyzes the reduction of dihydro-4-hydroxyphenylpyruvate (H2HPP) to generate tetrahydro-4-hydroxyphenylpyruvate (H4HPP), which is the third step of the biosynthetic pathway from prephenate to Choi. Comparative structural analysis indicates that ligand binding-induced conformational change of AerF is different from that of the other SDR superfamily reductase using H2HPP as a substrate. Analyses of NADPH and substrate analogue binding sites combined with the results of mutagenesis analyses suggest that a particular serine residue mainly involves in the initiation of the proton transfer between the substrate and the residues of AerF, which is an uncommon feature in SDR superfamily reductase. Furthermore, based on the observations of structural and mutagenesis analyses, the catalytic mechanism of AerF is proposed and a proton transfer pathway in AerF is deduced.Graphical abstract
Source: Journal of Structural Biology - Category: Biology Source Type: research
More News: Biology | Study