Catestatin in defense of oxidative-stress-induced apoptosis: a novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium

Publication date: Available online 12 November 2019Source: PeptidesAuthor(s): Song-Yun Chu, Fen Peng, Jie Wang, Lin Liu, Lei Meng, Jing Zhao, Xiao-Ning Han, Wen-Hui DingAbstractApoptosis induced by oxidative stress is one of the most important cardiomyocytes losses during ischemia-reperfusion (I/R). Catestatin (CST) has been demonstrated to have the anti-oxidative capacity in vitro. We hypothesized that CST intervention could reduce apoptosis of cardiomyocytes induced by oxidative stress in I/R. In Langendorff-perfused rat heart global I/R model, CST was introduced at the reperfusion stage. In comparison to the control group, CST led to preservation on activities of superoxide dismutase and glutathione peroxidase, improvement of hemodynamics, and reduced infarction area in reperfused myocardium. The protection of CST was also shown by less apoptotic cardiomyocytes in TUNEL staining, less caspase-3 activation, and increased phosphorylation of protein kinase B (PKB/Akt) in Western blot. To further demonstrate the benefits of CST and explore the possible underlying mechanism, H2O2-challenged primary-cultured neonatal rat cardiomyocytes were used to simulate the oxidative-stressed scenario. CST incubation with the H2O2-challenged cardiomyocytes led to reduction of apoptosis, which was demonstrated by less Hoechst 33342 positive staining of nuclei, less caspase-3 activation, and DNA fragmentation. The effect of CST was abrogated by pretreatment of the cardiomyocytes with the PI3K ...
Source: Peptides - Category: Biochemistry Source Type: research