Voluntary exercise and estradiol reverse ovariectomy-induced spatial learning and memory deficits and reduction in hippocampal brain-derived neurotrophic factor in rats

This study was designed to investigate the effects of voluntary exercise and estrogen replacement on learning and memory deficits and reduction of hippocampal brain derived neurotrophic factor (BDNF) levels induced by ovariectomy. Ovariectomized rats were given daily vehicle or 17 β-estradiol (20 μg/kg) and allowed to freely exercise in a running wheel over the course of 2 weeks. After this period, they were trained and tested on a water-maze spatial task for 5 consecutive days, followed by a probe test one day later. At the end of the behavioral tests, all animals were decapitated and their hippocampal levels of BDNF were measured. Ovariectomy impaired spatial learning and memory and reduced hippocampal BDNF levels. Exercise significantly improved performance during both training and the retention of the water-maze task and increased hippocampal BDNF. Exercise, 17 β-estradiol and their combination recovered the impairing effects of ovariectomy on learning and memory performance. The combined treatment did not produce stronger effect than either exercise or 17 β-estradiol alone. Our findings provide an important evidence about positive influences of regular exercise and estrogen treatment against cognitive and BDNF deficits induced in ovariectomized rats, an experimental model of menopause.
Source: Pharmacology Biochemistry and Behavior - Category: Biochemistry Source Type: research