L-type Ca2+ channels and charybdotoxin-sensitive Ca2+-activated K+ channels are required for reduction of GABAergic activity induced by β2-adrenoceptor in the prefrontal cortex

Publication date: Available online 20 October 2019Source: Molecular and Cellular NeuroscienceAuthor(s): Wei-Ke Deng, Xing Wang, Hou-Cheng Zhou, Fei LuoAbstractWhereas β2-adrenoceptor (β2-AR) has been reported to reduce GABAergic activity in the prefrontal cortex (PFC), the underlying cellular and molecular mechanisms have not been completely determined. Here, we showed that β2-AR agonist Clenbuterol (Clen) decreased GABAergic transmission onto PFC layer V/VI pyramidal neurons via a presynaptic mechanism without altering postsynaptic GABA receptors. Clen decreased the action potential firing rate but increased the burst afterhyperpolarization (AHP) amplitude in PFC interneurons. Application of L-type Ca2+ channel or charybdotoxin-sensitive Ca2+-activated K+ channel inhibitors blocked Clen-induced decreases in action potential firing rate, spontaneous inhibitory postsynaptic current (sIPSC) frequency and Clen-induced enhancement of AHP amplitude, suggesting that the effects of Clen involves L-type Ca2+ Channels and charybdotoxin-sensitive Ca2+-activated K+ channels. Our results provide a potential cellular mechanism by which Clen controls GABAergic neuronal activity in PFC.
Source: Molecular and Cellular Neuroscience - Category: Neuroscience Source Type: research