KINETIC STUDIES OF HYDROLYSIS REACTION OF NaBH4 WITH γ-Al2O3 NANOPARTICLES AS CATALYST PROMOTER AND CoCl2 AS CATALYST

This study mainly focuses on kinetics of NaBH4/Al2O3 nanoparticles (20 nm)/H2O system with CoCl2 as catalyst and the factors that affect the hydrogen generation rate (HGR). It is observed that the reaction rate increases considerably with increase in NaBH4, Al2O3 nanoparticle (20 nm), CoCl2 and NaOH concentrations and the respective reaction orders are calculated. Hydrogen generation rate is also investigated at different temperatures (303, 313, 323 and 333 K) for constant NaBH4 (1.25 moles/L), NaOH (1.4 moles/L), CoCl2 (0.02 moles/L) and Al2O3 (0.09 moles/L) concentrations. Kinetics of the NaBH4 hydrolysis reaction increases with γ -Al2O3 nanoparticles and the calculated activation energy is 29 kJ/moles. This study also reports that a combined dual-solid-fuel system is highly efficient in terms of hydrogen storage capacities compared with a single hydride based system. Maximum hydrogen generation efficiency, observed at a mass ratio of 0.09: 0.7 (Al2O3/NaBH4), is 99.34%.
Source: Brazilian Journal of Chemical Engineering - Category: Chemistry Source Type: research