Effect of impeller type on mixing of highly concentrated slurries of large particles

Publication date: Available online 6 September 2019Source: ParticuologyAuthor(s): Argang Kazemzadeh, Farhad Ein-Mozaffari, Ali LohiAbstractMany chemical engineering processes deal with dense suspensions of large solid particles in liquid. Behaviors of such systems are difficult to predict because the many solid particles strongly affect the hydrodynamics produced by the impeller. The main objective was to assess the performances of the PBT, A310, and PF3 impellers in agitating highly concentrated slurries of large particles. Electrical resistance tomography was used to determine the degree of homogeneity and solid particle distribution within the slurry reactor. To gain more insight into the complex behavior of the flow inside the dense suspensions, computational fluid dynamics simulations were conducted using a Eulerian‒Eulerian multiphase model. Both qualitative and quantitative analyses were performed to obtain details on the dispersed solid phase distribution and its effect on the mixing quality. We found that the PBT impeller was the most efficient in terms of consuming power and generating velocity and turbulent kinetic energy within the mixing tank.Graphical abstract
Source: Particuology - Category: Science Source Type: research
More News: Chemistry | Science