Deciphering Activation of Olfactory Receptors Using Heterologous Expression in Saccharomyces cerevisiae and Bioluminescence Resonance Energy Transfer

Hetero- and homo-oligomerization of G protein-coupled receptors (GPCRs) has been addressed in the past years using various approaches such as co-immunoprecipitation, fluorescence resonance energy transfer and bioluminescence resonance energy transfer (BRET). Here, we report the methodological details from a previously published study to investigate the relationships between oligomerization and activation states of olfactory receptors (ORs). This methodology combines heterologous expression of ORs in Saccharomyces cerevisiae and BRET assays on membrane fractions, in particular, upon odorant stimulation. We have demonstrated that ORs constitutively homodimerize at the plasma membrane and that high odorant concentrations promote a conformational change of the dimer, which becomes inactive. We proposed a model in which one odorant molecule binding the dimer would induce activation, while two odorant molecules, each binding one protomer of the dimer, would blunt signaling.
Source: Springer protocols feed by Genetics/Genomics - Category: Genetics & Stem Cells Source Type: news
More News: Genetics | Study