Finite element simulation for the effect of loading rate on visco-hyperelastic characterisation of soft materials by spherical nanoindentation

Nanoindentation test performed by atomic force microscopy is highly recommended for the characterisation of soft materials at nanoscale. The assumption proposed in the characterisation is that the material is pure elastic with no viscosity. However, this assumption does not represent the real characteristics of soft materials such as bio tissue or cell. Therefore, a parametric finite element simulation of nanoindentation by spherical tip was carried out to investigate the response of cells with different constitutive laws (elastic, hyperelastic and visco-hyperelastic). The investigation of the loading rate effect on the characterisation of cell mechanical properties was performed for different size of spherical tip. The selected dimensions of spherical tips cover commercially available products. The viscosity effects are insensitive to the varied dimensions of spherical tip in this study. A limit loading rate was found above which viscous effect has to be considered to correctly determine the mechanical properties. The method in this work can be implemented to propose a criterion for the threshold of loading rate when viscosity effect can be neglected for soft material characterisation.
Source: IET Nanobiotechnology - Category: Nanotechnology Source Type: research