Two Closely Spaced Aneurysms of the Supraclinoid Internal Carotid Artery: How Does One Influence the Other?

The objective of this study was to use image-based computational fluid dynamics (CFD) techniques to analyze the impact that multiple closely spaced intracranial aneurysm (IAs) of the supra-clinoid segment of the internal carotid artery (ICA) have on each other's hemodynamic characteristics. The vascular geometry of fifteen (15) subjects with 2 IAs was gathered using a 3D digital subtraction angiography clinical system. Two groups of computer models were created for each subject's vascular geometry: both IAs present (model A) and after removal of one IA (model B). Models were separated into two groups based on IA separation: tandem (one proximal and one distal) and adjacent (aneurysms directly opposite on a vessel). Simulations using a pulsatile velocity waveform were solved by a commercial CFD solver. Proximal IAs altered flow into distal IAs (5 of 7), increasing flow energy and spatial-temporally averaged wall shear stress (STA-WSS: 3 –50% comparing models A to B) while decreasing flow stability within distal IAs. Thus, proximal IAs may “protect” a distal aneurysm from destructive remodeling due to flow stagnation. Among adjacent IAs, the presence of both IAs decreased each other's flow characteristics, lowering WSS (models A to B) and increasing flow stability: all changes statistically significant (p <  0.05). A negative relationship exists between the mean percent change in flow stability in relation to adjacent IA volume and ostium area. Closely spaced IAs i...
Source: Journal of Biomechanical Engineering - Category: Biomedical Engineering Source Type: research