Numerical analysis and experimental validation of hydrodynamics of a thin bubbling fluidized bed for various particle-size distributions using a three-dimensional dense discrete phase model

Publication date: Available online 2 July 2019Source: ParticuologyAuthor(s): Abolhasan Hashemisohi, Lijun Wang, Abolghasem Shahbazi, Hossein AminiAbstractA dense discrete phase model combined with the kinetic theory of granular flows was used to study the bubbling characteristics and segregation of poly-dispersed particle mixtures in a thin fluidized bed. Our simulations showed that in using the hybrid Eulerian–Lagrangian method, the common use of one computational cell in the thickness direction of the thin bed does not predict wall friction correctly. Instead, a three-cell discretization of the thickness direction does predict the wall friction well but six cells were needed to prevent overprediction of the bed expansion. The change in specularity factor (SF) of the model not only affected the predictions of the velocity of particles, but also had a considerable impact on their flow pattern. A decrease in SF, which decreases wall friction, showed an over-prediction in the size of bubbles, particle velocities, and void fraction of the bed, and led to a shift in the circulation center toward the bottom of the bed. The segregation of the Geldart B particles was studied in the narrow range from 400 to 600 μm with a standard deviation less than 10% of the average diameter. Simulations showed that large particles accumulated close to the distributor at the bottom of the bed and the center of the bed, but small particles moved towards the wall and top surface. The decrease...
Source: Particuology - Category: Science Source Type: research
More News: Science | Study