Wavelet denoising and nonlinear analysis of solids concentration signal in circulating fluidized bed riser

Publication date: Available online 2 July 2019Source: ParticuologyAuthor(s): Li-Li Gu, Yawen Zhang, Jesse ZhuAbstractParticles, particle aggregates, and reactor walls complicate the dynamic microstructures of circulating fluidized beds (CFBs). Using local solids concentration data from a 10-m-high and 76.2-mm-inner-diameter riser with FCC (Fluid Catalytic Cracking) particles (dp = 67 μm, ρp = 1500 kg/m3), this paper presents an improved denoising process for use before nonlinear chaos analysis. Using the soft-threshold denoising method in the wavelet domain with experimental empty bed signals as base data to estimate the denoising threshold, an efficient denoising algorithm was proposed and used for the dynamic signals in CFBs. Analysis shows that for the local solids concentration time series, high-frequency fluctuations may be one of the system properties, while noise interference can also make a low-frequency contribution. An exact denoising method is needed in such cases. The correlation dimension and Kolmogorov entropy were calculated using denoised data and the results showed that the particle behavior in the CFB is highly complex. Generally, two correlation dimensions coexist in a low-flux CFB. The first correlation dimension is low and corresponds to small-scale fluctuations that reveal a high-frequency pseudo-periodic movement, but the second correlation dimension is high and corresponds to large-scale fluctuations that indicate multi-...
Source: Particuology - Category: Science Source Type: research
More News: Science