Zinc-induced root architectural changes of rhizotron-grown B. napus correlate with a differential nitro-oxidative response

In this study the effect of a low, growth-inducing, and a high, growth inhibiting Zn concentrations on the early development of Brassica napus (L.) root architecture and the underlying nitro-oxidative mechanisms were studied in a soil-filled rhizotron system.The growth-inhibiting Zn treatment resulted in elevated protein tyrosine nitration due to the imbalance in ROS and RNS homeostasis, however its pattern was not changed compared to the control. This nitro-oxidative stress was accompanied by serious changes in the cell wall composition and decrease in the cell proliferation and viability, due to the high Zn uptake and disturbed microelement homeostasis in the root tips. During the positive root growth response, a tyrosine nitration-pattern reorganisation was observed; there were no substantial changes in ROS and RNS balance and the viability and proliferation of the root tips’ meristematic zone decreased to a lesser extent, as a result of a lower Zn uptake.The obtained results suggest that Zn in different amounts triggers different root growth responses accompanied by distinct changes in the pattern and strength of tyrosine nitration, proposing that nitrosative processes have an important role in the stress-induced root growth responses.
Source: Nitric Oxide - Category: Chemistry Source Type: research