Morphogenesis as bayesian inference: A variational approach to pattern formation and control in complex biological systems

Publication date: Available online 12 June 2019Source: Physics of Life ReviewsAuthor(s): Franz Kuchling, Karl Friston, Georgi Georgiev, Michael LevinAbstractRecent advances in molecular biology such as gene editing [1], bioelectric recording and manipulation [2] and live cell microscopy using fluorescent reporters [3], [4] – especially with the advent of light-controlled protein activation through optogenetics [5] – have provided the tools to measure and manipulate molecular signaling pathways with unprecedented spatiotemporal precision. This has produced ever increasing detail about the molecular mechanisms underlying development and regeneration in biological organisms. However, an overarching concept – that can predict the emergence of form and the robust maintenance of complex anatomy – is largely missing in the field. Classic (i.e., dynamic systems and analytical mechanics) approaches such as least action principles are difficult to use when characterizing open, far-from equilibrium systems that predominate in Biology. Similar issues arise in neuroscience when trying to understand neuronal dynamics from first principles. In this (neurobiology) setting, a variational free energy principle has emerged based upon a formulation of self-organization in terms of (active) Bayesian inference. The free energy principle has recently been applied to biological self-organization beyond the neurosciences [6], [7]. For biological processes that underwrite development or regene...
Source: Physics of Life Reviews - Category: Physics Source Type: research