Hierarchical spiral-scan trajectory for efficient scanning ion conductance microscopy

Publication date: Available online 17 May 2019Source: MicronAuthor(s): Jian Zhuang, Zhiwu Wang, Xiaobo Liao, Bingli Gao, Lei ChengAbstractScanning ion conductance microscopy (SICM) is an emerging technique for non-contact, high-resolution topography imaging, especially suitable for live cells investigation in a physiological environment. Despite its rapid development, the extended acquisition time issues of its typical hopping/backstep scanning mode still restrict its application for more fields. Herein, we propose a novel SICM scanning approach to effectively reduce the retract distance of existing hopping/backstep mode. In this approach, the SICM probe first gradually descends in the z-direction. Then by using Archimedes spiral trajectory, which has the advantage of higher angular velocity due to its continuous and smooth trajectory, the probe rapidly detects the highest point of the sample in the xy-plane in a layer-by-layer way. Further, the maximum height that decides the retrace distance of pipet in the detected region can be quickly achieved, avoiding a huge retrace distance usually adopted in the existing methods without any prior knowledge (sample height and steepness in the scanning region). Therefore, this new scanning method can greatly reduce the imaging time by minimizing the retrace height of each measurement point. Theoretical analysis is conducted to compare the imaging time of traditional and new method. And various factors in the new method that affect the ...
Source: Micron - Category: Biology Source Type: research