Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship

Publication date: Available online 11 April 2019Source: Advances in Biological RegulationAuthor(s): Meena Jhanwar-Uniya, John V. Wainwright, Avinash L. Mohan, Michael E. Tobias, Raj Murali, Chirag D. Gandhi, Meic H. SchmidtAbstractActivation of Mechanistic target of rapamycin (mTOR) signaling plays a crucial role in tumorigenesis of numerous malignancies including glioblastoma (GB). The Canonical PI3K/Akt/mTOR signaling cascade is commonly upregulated due to loss of the tumor suppressorm PTEN, a phosphatase that acts antagonistically to the kinase (PI3K) in conversion of PIP2 to PIP3. mTOR forms two multiprotein complexes, mTORC1 and mTORC2 which are composed of discrete protein binding partners to regulate cell growth, motility, and metabolism. These complexes are sensitive to distinct stimuli, as mTORC1 is sensitive to nutrients while mTORC2 is regulated via PI3K and growth factor signaling. The main function of mTORC1 is to regulate protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. On the other hand, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK and it also plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. mTORC1 and mTORC2 regulate each other, as shown by the fact that Akt regulates PRAS40 phosphorylation, which disinhibits mTOR...
Source: Advances in Biological Regulation - Category: Biology Source Type: research