Cell theory, intrinsically disordered proteins, and the physics of the origin of life

Publication date: Available online 6 April 2019Source: Progress in Biophysics and Molecular BiologyAuthor(s): V.V. MatveevAbstractCell theory, as formulated by Theodor Schwann in 1839, introduced the idea that the cell is the main structural unit of living nature. Later, in solving the problem of cell multiplication, Rudolf Virchow expanded the cell theory with a postulate: all cells only arise from pre-existing cells. But what did the very first cell arise from? This paper proposes extending the Virchow’s law by the assumption that between the nonliving protocell and the first living cell the continuity of fundamental physical properties (the principle of invariance of physical properties) is preserved. The protocell is understood here as a cell-shaped physical system on the basis of the self-organized biologically significant prebiotic macromolecules, primarily peptides, having a potential to transform into the living cell. Biophase is considered as the physical basis of the membraneless protocell, the internal environment of which is separated from the external environment due to the phase of adsorbed water. The evidence is given that the first protocells may have been formed on the basis of intrinsically disordered peptides. Data on the similarity of the physical properties of living cells and the following model systems are given: protein and artificial polymer solutions, coacervate droplets, and ion-exchange resin granules. Available data on the similarity of the phys...
Source: Progress in Biophysics and Molecular Biology - Category: Molecular Biology Source Type: research