Novelty of Bioengineered Iron Nanoparticles in Nanocoated Surgical Cotton: A Green Chemistry.

Novelty of Bioengineered Iron Nanoparticles in Nanocoated Surgical Cotton: A Green Chemistry. Adv Pharmacol Sci. 2019;2019:9825969 Authors: Turakhia B, Chikkala S, Shah S Abstract The current focus of nanotechnology is to develop environmentally safe methodologies for the formulation of nanoparticles. The phytochemistry of Zingiber officinale inspired us to utilize it for the synthesis of iron nanoparticles. GC-MS analysis revealed the phytochemical profile of ginger. Out of 20 different chemicals, gingerol was found to be the most potent phytochemical with a retention time of 40.48 min. The present study reports a rapid synthesis method for the formation of iron nanoparticles and its potential efficacy as an antibacterial agent and an antioxidant. Because of its antibacterial property, ginger extract was used to coat surgical cotton. Synthesized ginger root iron nanoparticles (GR-FeNPs) were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis, and particle size analysis. XRD confirmed the crystalline structure of iron oxide nanoparticles as it showed the crystal plane (2 2 0), (3 1 1), (2 2 2), and (4 0 0). The particle size analyzer (PSA) showed the average size of the particles, 56.2 nm. The antimicrobial activity of the FeNPs was tested against different Gram-positive and Gram-negative bacteria. E. coli showed maximum inhibition as compared with the other organ...
Source: Advances in Pharmacological Sciences - Category: Drugs & Pharmacology Tags: Adv Pharmacol Sci Source Type: research