Genome-wide identification and characterization of glucose transporter (glut) genes in spotted sea bass (Lateolabrax maculatus) and their regulated hepatic expression during short-term starvation

In this study, we identified a total of 21 glut genes in spotted sea bass (Lateolabrax maculatus) through extensive data mining of existing genomic and transcriptomic databases. Glut genes of spotted sea bass were classified into three subfamilies (Class I, Class II and Class III) according to the phylogenetic analysis. Glut genes of spotted sea bass were distributed in 15 out of 24 chromosomes. Deduced gene structure analysis including the secondary structure and the three-dimensional structures, as well as the syntenic analysis further supported their annotations and orthologies. Expression profile in healthy tissues indicated that 9 of 21 glut genes were expressed in liver of spotted sea bass. During short-term starvation, the mRNA expression levels of 3 glut genes (glut2, glut5, and glut10) were significantly up-regulated in liver (P < 0.05), indicating their potential roles in sugar transport and consumption. These findings in our study will facilitate the further evolutionary characterization of glut genes in fish species and provide a theoretical basis for their functional study.Graphical abstract
Source: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics - Category: Genetics & Stem Cells Source Type: research