Cobalt oxide-based nanoarchitectures for electrochemical energy applications

Publication date: Available online 5 March 2019Source: Progress in Materials ScienceAuthor(s): Jun Mei, Ting Liao, Godwin A. Ayoko, John Bell, Ziqi SunAbstractCobalt oxide nanostructures have been considered as promising electrode materials for various electrochemical applications, especially for batteries, supercapacitors, and electrocatalysis, owing to their unparalleled advantages of high theoretical capacity, highly-active catalytic properties, and outstanding thermal/chemical stability. If hybridized with property-complementary nanomaterials, such as nanocarbon, CNTs, graphene, metal oxides/sulfides, conductive polymers, etc., their electrochemical properties can be further enhanced in terms of specific reversible capacity/capacitance, rate capability, cycling stability, and catalytic activity. In this review, we first give a comprehensive overview on recent progress in both monolithic cobalt oxide nanostructures and their hybrid nanomaterials for batteries, supercapacitors, and electrocatalysis applications. Then, structure-property relationships of the cobalt oxide based nanomaterials and current challenges in both nanoarchitectures design and their applications in electrochemical energy devices are proposed, and an outlook on future research of this family of materials in electrochemical energy applications are brought forward. This understanding on the relationships of synthesis-nano/microstructure-property-performance of cobalt oxide-based nanomaterials is expected ...
Source: Progress in Materials Science - Category: Materials Science Source Type: research