Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy

Publication date: Available online 13 February 2019Source: Molecular and Cellular NeuroscienceAuthor(s): Mariana Oliveira Mendes, Alexandra Isabel Rosa, Andreia Neves Carvalho, Maria João Nunes, Pedro Dionísio, Elsa Rodrigues, Daniela Costa, Sara Duarte-Silva, Patrícia Maciel, Cecília Maria Pereira Rodrigues, Maria João Gama, Margarida Castro-CaldasAbstractParkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the progressive loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc) and by the presence of intracellular inclusions, known as Lewy bodies. Despite SNpc being considered the primary affected region in PD, the neuropathological features are confined solely to the nigro-striatal axis. With disease progression other brain regions are also affected, namely the cerebral cortex, although the spreading of the neurologic damage to this region is still not completely unraveled.Tauroursodeoxycholic acid (TUDCA) is an endogenous bile acid that has been shown to have antioxidant properties and to exhibit a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD. Moreover, TUDCA anti-inflammatory properties have been reported in glial cells, making it a prominent therapeutic agent in PD.Here, we used C57BL/6 mice injected with MPTP in a sub-acute paradigm aiming to investigate if the neurotoxic effects of MPTP could be extended to the cerebral cortex. In parallel, we evaluated the anti...
Source: Molecular and Cellular Neuroscience - Category: Neuroscience Source Type: research