The expression of genes involved in excitatory and inhibitory neurotransmission in turtle (Trachemys scripta) brain during anoxic submergence at 21 °C and 5 °C reveals the importance of cold as a preparatory cue for anoxia survival

Publication date: Available online 13 February 2019Source: Comparative Biochemistry and Physiology Part D: Genomics and ProteomicsAuthor(s): Christine S. Couturier, Jonathan A.W. Stecyk, Stian Ellefsen, Guro K. Sandvik, Sarah L. Milton, Howard M. Prentice, Göran E. NilssonAbstractWe investigated if transcriptional responses are consistent with the arrest of synaptic activity in the anoxic turtle (Trachemys scripta) brain. Thirty-nine genes of key receptors, transporters, enzymes and regulatory proteins of inhibitory and excitatory neurotransmission were partially cloned and their expression in telencephalon of 21 °C- and 5 °C-acclimated normoxic, anoxic (24 h at 21 °C; 1 and 14 days at 5 °C) and reoxygenated (24 h at 21 °C; 13 days at 5 °C) turtles quantified by real-time RT-PCR. Gene expression was largely sustained with anoxia at 21 °C and 5 °C. However, the changes in gene expression that did occur were congruous with the decline in glutamatergic activity and the increase in GABAergic activity observed at cellular and whole organism levels. Moreover, at 21 °C, the alterations in gene expression with anoxia induced a distinct gene expression pattern compared to normoxia and reoxygenation. Strikingly, acclimation from 21 °C to 5 °C in normoxia effectuated substantial transcriptional responses. Most prominently, 56% of the excitatory neurotransmission genes were down-regulated, including most of the ones encoding the subunits composin...
Source: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics - Category: Genetics & Stem Cells Source Type: research