Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials

We assessed the geometric distortion of 1.5-Tesla (T) and 3.0-T magnetic resonance (MR) images with the Leksell skull frame system using three types of cranial quick fixation screws (QFSs) of different materials—aluminum, aluminum with tungsten tip, and titanium—for skull frame fixation. Two kinds of acrylic phantoms were placed on a Leksell skull frame using the three types of screws, and were scanned with computed tomography (CT), 1.5-T MR imaging and 3.0-T MR imaging. The 3D coordinates for both strengths of MR imaging were compared with those for CT. The deviations of the measured coordinates at selected points (x = 50, 100 and 150; y = 50, 100 and 150) were indicated on different axial planes (z = 50, 75, 100, 125 and 150). The errors of coordinates with QFSs of aluminum, tungsten-tipped aluminum, and titanium were <1.0, 1.0 and 2.0 mm in the entire treatable area, respectively, with 1.5 T. In the 3.0-T field, the errors with aluminum QFSs were <1.0 mm only around the center, while the errors with tungsten-tipped aluminum and titanium were >2.0 mm in most positions. The geometric accuracy of the Leksell skull frame system with 1.5-T MR imaging was high and valid for clinical use. However, the geometric errors with 3.0-T MR imaging were larger than those of 1.5-T MR imaging and were acceptable only with aluminum QFSs, and then only around the central region.
Source: Journal of Radiation Research - Category: Physics Authors: Tags: Technology Source Type: research
More News: CT Scan | MRI Scan | PET Scan | Physics