Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti

In the present study, high purity copper oxide nanoparticles (NPs) were synthesised using Tridax procumbens leaf extract. Green syntheses of nano-mosquitocides rely on plant compounds as reducing and stabilising agents. Copper oxide NPs were characterised using X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR), Field-emission scanning electron microscopy with energy dispersive spectroscopy, Ultraviolet–visible spectrophotometry and fluorescence spectroscopy. XRD studies of the NPs indicate crystalline nature which was perfectly matching with a monoclinic structure of bulk CuO with an average crystallite size of 16 nm. Formation of copper oxide NPs was confirmed by FT-IR studies and photoluminescence spectra with emission peaks at 331, 411 and 433 nm were assigned to a near-band-edge emission band of CuO in the UV, violet and blue region. Gas chromatography–mass spectrometry studies inferred the phytochemical constituents of the leaf extract. Larvicidal activity of synthesised NPs using T. procumbens leaf extract was tested against Aedes aegypti species (dengue, chikungunya, zika and yellow fever transmit vector).
Source: IET Nanobiotechnology - Category: Nanotechnology Source Type: research