Electro-Osmosis Modulated Viscoelastic Embryo Transport in Uterine Hydrodynamics: Mathematical Modeling

Embryological transport features a very interesting and complex application of peristaltic fluid dynamics. Electro-osmotic phenomena are also known to arise in embryo transfer location. The fluid dynamic environment in embryological systems is also known to be non-Newtonian and exhibits strong viscoelastic properties. Motivated by these applications, the present article develops a new mathematical model for simulating two-dimensional peristaltic transport of a viscoelastic fluid in a tapered channel under the influence of electro-osmosis induced by asymmetric zeta potentials at the channel walls. The robust Jeffrey viscoelastic model is utilized. The finite Debye layer electro-kinetic approximation is deployed. The moving boundary problem is transformed to a steady boundary problem in the wave frame. The current study carries significant physiological relevance to an ever-increasing desire to study intrauterine fluid flow motion in an artificial uterus. The consequences of this model may introduce a new mechanical factor for embryo transport to a successful implantation site. Hydrodynamic characteristics are shown to be markedly influenced by the electro-osmosis, the channel taper angle, and the phase shift between the channel walls. Furthermore, it is demonstrated that volumetric flow rates and axial flow are both enhanced when the electro-osmotic force aids the axial flow for specific values of zeta potential ratio. Strong trapping of the bolus (representative of the embryo...
Source: Journal of Biomechanical Engineering - Category: Biomedical Engineering Source Type: research