Developments and future directions of phase diagram, physicochemical and optical studies of binary organic complexes

Publication date: June 2013 Source:Progress in Crystal Growth and Characterization of Materials, Volume 59, Issue 2 Author(s): R.N. Rai , R.S.B. Reddi , U.S. Rai The aim of this review is to emphasize solvent free or green synthesis, a most efficient utilization of starting materials to give maximum yield, and an alternative route to producing novel promising materials. In this regard the phase diagram study has shown applications in the determination of the precise composition of binary compounds of a specific nature and in the identification of the parameters that affect the crystal growth. To provide an overview worthy of phase diagram, physicochemical, thermal and structure investigations; studies of eleven systems, namely, urea–m-nitrobenzoic acid, urea–p-nitrophenol, urea–resorcinol, benzoin–o-phenylenediamine, pyrene–m-dinitrobenzene, vanillin–p-anisidine, resorcinol–p-dimethylaminobenzaldehyde, benzophenone–diphenylamine, anthracene–picric acid, 8-hydroxyquinoline–salicylic acid and 8-hydroxyqunoline–1,2,3-trihydroxybenzene forming organic complexes, have been reported. In addition, the original data of a newly synthesized complex of m-hydroxybenzaldehyde (HB) and p-chloroaniline (CA) is being reported for the first time. The phase diagram of HB–CA system also shows the formation of a complex in 1:1 M ratio, and two eutectics on either side of the complex. The complex's formation was studied using FTIR, NMR, DSC and powder X-ray diffrac...
Source: Progress in Crystal Growth and Characterization of Materials - Category: Chemistry Source Type: research
More News: Chemistry | Study