Application of polycaprolactone, chitosan, and collagen composite as a nanofibrous mat loaded with silver sulfadiazine and growth factors for wound dressing

AbstractFabrication of nanofibrous biomaterials composed of natural and synthetic materials that incorporated with antibiotic and growth factors with controlled release manner is an attractive topic in wound healing. The purpose of this study was to prepare optimal composite of materials as biomimetic nanofibrous mats for application in wound healing. The mat was prepared of polycaprolactone (PCL) in the bottom, chitosan/poly ethylene oxide (Cs/PEO) in the middle, and PCL/collagen (PCL/Coll) in the top layer. A panel of standard characterization tests of nanofibrous mat was performed and its compatibilities in strength and integration were confirmed. Middle layer was loaded with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and silver sulfadiazine (SSD) was incorporated in the bottom layer as an anti ‐infection factor. Then, on the dorsum of rats, a 400‐mm2 wound was created and surrounded by a silicone ring to control the usual tissue contractions. Nanofibrous mats with or without growth factors were applied as wound dressings and at day 14, the healing process was evaluated. At day 14, the treated group by designed mat showed faster epithelialization and angiogenesis. Silicone ring in the test group was desirable in wound closure compared to the control group. Reformation of skin tissue was manifested in a shorter time. This composite nanofibrous mat could be introduced as a dynamic and effective candidate for wound dressing.
Source: Artificial Organs - Category: Transplant Surgery Authors: Tags: Main Text Article Source Type: research