Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function

The prevalence of type 2 diabetes mellitus (T2DM) is increasing rapidly with its associated morbidity and mortality; many pathophysiological pathways such as oxidative stress, inflammatory responses, adipokines, obesity ‐induced insulin resistance, improper insulin signaling, and beta cell apoptosis are associated with the development of T2DM. There is increasing evidence of the role of mitochondrial dysfunction in the onset of T2DM, particularly in relation to the development of diabetic complications. Here, the role of mitochondrial dysfunction in T2DM is reviewed together with its modulation by antidiabetic therapeutic agents, an effect that may be independent of their hypoglycemic effect. AbstractThe prevalence of type 2 diabetes mellitus (T2DM) is increasing rapidly with its associated morbidity and mortality. Many pathophysiological pathways such as oxidative stress, inflammatory responses, adipokines, obesity ‐induced insulin resistance, improper insulin signaling, and beta cell apoptosis are associated with the development of T2DM. There is increasing evidence of the role of mitochondrial dysfunction in the onset of T2DM, particularly in relation to the development of diabetic complications. Here, the role of mitochondrial dysfunction in T2DM is reviewed together with its modulation by antidiabetic therapeutic agents, an effect that may be independent of their hypoglycemic effect.
Source: Journal of Cellular Physiology - Category: Cytology Authors: Tags: REVIEW ARTICLE Source Type: research