Spatial brain networks

Publication date: Available online 12 October 2018Source: Comptes Rendus PhysiqueAuthor(s): Danielle S. Bassett, Jennifer StisoAbstractThe human brain is a wonderfully complex organ characterized by heterogeneous connectivity between cellular and tissue units. This complexity supports the rich repertoire of dynamics and function that is characteristic of human cognition. While studies of brain connectivity have provided important insight into healthy cognition as well as its alteration in psychiatric disorders and neurological disease, an understanding of how this connectivity is embedded into the 3-dimensional space of the skull has remained elusive. In this article, we will motivate the importance of studying the brain as a spatially embedded network, particularly for understanding the rules of its development and alterations to those rules that may occur in neurodevelopmental disorders such as schizophrenia. We will review recent evidence for well-defined wiring rules in the brain, informed by notions of wiring minimization, spatially localized modules, and hierarchically nested topology. We will then discuss potential drivers of these rules in the form of evolution, genetics, energy, and the need for computational complexity. Finally, we will conclude with a discussion of emerging frontiers in the study of spatial brain networks, both in theory and modeling, and their potential to enhance our understanding of mental health.RésuméLe cerveau humain est un organe merveille...
Source: Comptes Rendus Physique - Category: Physics Source Type: research