Evaluation of Physical Integrity of Lipid Bilayer Under Oxidative Stress: Application of Fluorescence Microscopy and Digital Image Processing

Membrane damage as a result of oxidative stress is quantified using digital image heterogeneity analysis of single giant unilamellar vesicles (GUVs) composed of soy phosphatidylcholine (PC), which were found to undergo budding when containing chlorophyll a (Chla) as photosensitizer in the lipid bilayer. Based on digital image heterogeneity analysis, a dimensionless scalar parameter “entropy” for the budding process was found to change linearly during an initial budding stage. Photo-induced peroxidation of PC to form linoleoyl hydroperoxides, further leading to domains of higher polarities in GUVs, was suggested to initiate the budding process. The effect on budding process of GUVs was suggested for use in assays for evaluation of potential protectors of lipid bilayer integrity under oxidative stress, and “entropy” seemed to be a valid descriptor of such membranal integrity. The one-step procedure for quantification of prooxidative effects and antioxidative protection provided by drug candidates and potential food ingredients in membranes could be easily automated for direct measurement of oxidative and antioxidative effects on cellular integrity.
Source: Springer protocols feed by Biochemistry - Category: Biochemistry Source Type: news
More News: Biochemistry