Giant viruses and their mobile genetic elements: the molecular symbiosis hypothesis

Publication date: December 2018Source: Current Opinion in Virology, Volume 33Author(s): Jonathan FiléeAmong the virus world, Giant viruses (GVs) compose one of the most successful eukaryovirus families. By contrast with other eukaryoviruses, GV genomes contain a wide array of mobile genetic elements (MGEs) that encompass diverse, mostly prokaryotic-like, transposable element families, introns, inteins, restriction–modification systems and enigmatic classes of mobile elements having little similarities with known families. Interestingly, several of these MGEs may be beneficial to the GVs, fulfilling two kinds of functions: (1) degrading host or competing virus/virophage DNA and (2) promoting viral genome integration, dissemination and excision into the host genomes.By providing fitness advantages to the virus in which they reside, these MGEs compose a kind of molecular symbiotic association in which both partners benefit from the presence of each other’s. Thus, protective effects provided by some of these MGEs may have generated an arm race between competing GVs in order to encode the most diverse arsenal of anti-viral weapons, explaining the unusual abundance of MGEs in GV genomes by a kind of ratchet effect.
Source: Current Opinion in Virology - Category: Virology Source Type: research
More News: Genetics | Virology